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DISTORTION OF ATOMIC-BEAM VELOCITY DlSTRl BUTIONS 

DUE TO CLASSICAL HARD-SPHERE GAS SCAllERlNG 

by Eugene J. Manista 

Lewis Research Center 

SUMMARY 

The concept of the effective scattering c ross  section that arises primarily in studies 
of collisions among thermal-energy particles is reviewed. A formulation of the effective 
scattering cross  section is developed from the definition of the collision cross  section 
and is shown to  reduce to the appropriate hard-sphere limit for the case of scattering in 
the center-of-mass system that is independent of relative velocity. 

The distortion of the Maxwellian velocity distribution of an atomic beam due to its 
passage through a classical hard-sphere scattering gas is investigated. The effect of the 
scattering gas is reduced to a generalized hard-sphere scattering probability function 
P(z) in which the collision radius d for a motionless scattering gas appears along with a 
function O(z) that takes proper account of the motion of the scattering gas atoms. The 
function P(z) gives the probability that a beam atom of velocity v undergoes no scatter- 
ing in passing through a region containing a Maxwellian scattering gas. The parameter 
z is a reduced "velocity" that correlates the motion of the scattering gas and the incom- 
ing beam atom velocity. A table of the function O(z) over the range 0 < - -  z < 50 is pre- 
sented from which the distorted velocity distribution may be computed. 

also investigated. A first-order approximation for the shift in the peak velocity shows 
that the shift 6 is to higher velocities and is linearly dependent on the collision c ross  
section .rrd and the density of scattering gas atoms present. These results are applied 
to the case of cesium-beam scattering by nitrogen, argon, and helium. The calculated 
shifts in the peak velocity are in good agreement with experimental results. The dis- 
torted velocity distribution calculated for the cesium-nitrogen interaction is also in good 
agreement with experimental results. 

The effect of the scattering gas in shifting the entire vacuum beam distribution is 
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INTRODUCTION 

The development of high-resolution velocity selectors (refs. 1 and 2) for  thermal- 
energy particles allows observation of the velocity distribution present in an  atomic 
beam. Moreover, distortion produced in the vacuum (unscattered) velocity distribution 
by the passage of an atomic beam through a scattering gas is directly observable along 
with any shift in the peak velocity of the vacuum distribution, or  for that matter, any 
velocity shift of the entire distribution. 

cesium-beam experiments and Miller and Kusch (ref, 1) in their potassium- and thallium- 
beam work with a helical velocity selector, observed deficiencies from the Maxwellian 
velocity distribution in the lower velocity groups as the source pressure was increased. 
They attributed the reduction in the number of atoms possessing the lower velocities to 
scattering effects associated with the cloud formation of beam atoms near the source 
slit. 

The effect of hard-sphere elastic scattering in distorting the velocity distribution of 
an atomic beam has been discussed qualitatively by Rosin and Rabi (ref. 4). Their dis- 
cussion, however, concerned itself primarily in showing that the distorted velocity dis- 
tribution had a negligible effect in altering the value of the collision radius d determined 
from total atomic - beam-attenuation studies. 

The present report extends the Rosin and Rabi qualitative discussion of the distor- 
tion produced in the velocity distribution of an atomic beam due to its passage through a 
Maxwellian scattering gas and gives quantitative results for estimating the distortion in 
the velocity distribution and the shift in the peak velocity of the unscattered beam. 

Previous investigators, such as Estermann et al. (ref. 3) in their gravity-deflection 

SYMBOLS 

All units a r e  in the cgs system. 

A dimensionless quantity, 8.rrd n fFg) vector velocity distribution 

B 

2 
g 

parameter defined by eq. (21)  of s c att e r  ing particles 

G geometrical transmissivity of d hard-sphere collision radius 
between beam particle and slotted-disk velocity selector 

Gn(x) general velocity distribution 
f(vg) scalar  velocity distribution of in te rms  of reduced quan- 

scattering gas particle 

scattering particles t i t ies 
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k 

Q 

m 

T 

V 

V 

V 

- 

mn 

vr 

modified beam distribution 
after velocity selection 

velocity distribution present in 
effusing Maxwellian beam 

distribution function defined by 

eq. (21) 

Boltzmann' s constant 

path length of beam through 
scattering particles 

mass of particle 

density of scattering particles 

probability that incoming beam 
particle of velocity v is not 
scattered out of beam 

probability that incoming be am 
particle of velocity v is not 
scattered out of beam by 
more than angular resolu- 
tion 8 

scattering probability function 

P(v) in t e rms  of reduced "ve- 
locities'? 

effective scattering c ros s  sec- 
tion 

kinetic temperature of particle 
distribution 

scalar  velocity of particle 

vector velocity of particle 

peak velocity of distribution 
InW 

relative velocity 

X 

Z 

xO 

h(v) 
2 ad 

reduced ' 'velocity' associated 
with incident-beam distri- 
bution 

reduced "velocity" that corre-  
lates incoming-beam ve- 
locity with that of peak ve- 
locity of scattering- gas 
distribution 

peak velocity of beam distribu- 
tion in source 

amount of shift in peak velocity 
of vacuum distribution 

minimum detectable angle of 
scattering of incident beam 
particles in laboratory co- 
ordinate system 

function that takes proper ac- 
count of velocity distribu- 
tion present in scattering 
gas for  hard-sphere colli- 
s ions 

spherical coordinates in lab- 

oratory system 

classical mean f ree  path for 
motionless hard-sphere gas 

mean f r e e  path for velocity v 

actual hard-sphere c ros s  sec- 
tion for  motionless scatter-  
ing gas 

velocity dependent total c ross  
section for scattering of two 
particles of relative velocity 

vr 
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da/do differential c ros s  section in 
center-of -mass  system 

da/do' differential c ros s  section in 
laboratory system for scat- 
tering of beam particle of 
velocity v into solid angle 
specified by 0 ? q ?  

azimuthal variable 

defined by eq. (9) 
q g  
q (Y) 

dw /dW' ratio of solid angle differentials 
for center-of-mass and labora- 
tory system 

Subscripts: 

a incident-beam variables and 
constants 

appr ox approximately 

g scattering- gas variables and 
constants 

Superscripts: 

I first approximation 

11 second approximation 

? quantity after scattering has 
occurred 

FORM ULATl ON AND D I SC U S S ION 

Effective Scattering Cross Section 

Consider a collimated beam of monoenergetic particles of mass  m and velocity T 

incident on a region of space containing a uniform density n 
The scattering particles a r e  assumed to have a normalized velocity distribution f(T ), 

g 
where g refers  to scattering-gas variables and constants. The probability P(v, e), 
where v = /TI, that a beam particle of velocity Y is not scattered out of the beam by 
more than an angle 0 relative to the incident beam after traversing a distance Q of the 
scattering gas may be written in te rms  of experimentally measureable quantities as 

of scattering gas particles. 
g 

where Q(v, 0 )  is the effective c ross  section for the scattering of the incident particles by 
an angle greater than the angular resolution 8 .  Experimentally, one measures Q(v, 0) 
by observing the change in the beam intensity and, hence, the change in P(v,0) as the 
density-distance product n Q is varied. If the incoming beam velocity is large com- 

g 
pared to  the mean velocity of the scattering gas particles, Q(v, 0)  approaches the t rue 
c ross  section for the interaction between the particles. In collisions involving thermal- 
energy particles, however, Q(v, 0)  as expressed by equation (1) is an effective cross  
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section for the interaction due to the motion of the scattering particles. 
From the definition of the c ross  section as the total number of incident particles 

scattered by more than an angle 0 per second divided by the incident beam intensity, 
the effective c ross  section Q(v, 0)  may be written in general as 

In equation (2), f(T ) is the fraction of scattering particles that have a velocity T 
IT - v I = v is the magnitude of the relative velocity, and da/dw' is the differential 
cross  section in the laboratory coordinate system for the scattering of an incoming beam 
particle of velocity 7 and for  the scattering gas particle of velocity Ti into the solid 
angle dwt specified by the spherical angular coordinates 8' and <pr .  

In general, the integrals required in equation (2) are often not obtainable in closed 
forms primarily because of the rather complicated relation existing between the dynamic 
variables that relate the differential cross  section in the laboratory system to those in 
the center-of-mass system (ref. 5). The differential cross  sections in the two coordi- 
nate systems a re  related according to 

- g g' 
g r  

g 

da - do dw 
dw' dw dw' 

(3) 

where da/dw is the differential c ross  section in the center-of-mass system and where 
dw /dwt expresses the geometrical relation between the solid angles seen in both 
systems. 

lution 8, considerable simplification results by allowing 0 to take on the value zero. 
This procedure reduces the problem to that of the total cross  section. Since the total 
cross  section in the laboratory system has the same value as in the center-of-mass 
system, integration of equation (2) over all scattering angles yields 

While equations (1) and (2) give the exact result in t e rms  of the known angular reso- 

where u(1T - Tgl) is now the velocity-dependent total c ross  section in the center-of-mass 
system and where Q(v) E Q(v, 0). 

The relation that exists between Tr, if, and if is 
g 
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where 0 is the angle between the velocities V and V such that V is within the 
range of dv and d8 equation (5) may be used to write equation (4) as 

g g g 
g g; 

In equation (6), f(v ) is the normalized scalar velocity distribution for the scattering gas 
particles (the scattering-gas velocity distribution f(T ) has been assumed to be spheri- 

g 
g cally symmetric in its phase space), and the integration over the azimuthal variable cp 

has been performed. The result  expressed by equation (6) is as far as one is able to 
car ry  the calculation of Q(v) without making a further assumption as to the explicit form 
of the total c ross  section a(vr). Regardless of the form of the variation of o(vr) with 
relative velocity, some ca re  must be exercised in recognizing the proper limits when 
the integration over both vr and v is performed. The first set  of integrals in equa- 
tion (6) is for the case where v > v while the second set  of integrals is for  the case 
where v < v 

For the case of the hard-sphere collision approximation in which the total cross  
section is taken as independent of relative velocity, that is a(vr) = 7-rd , equation (6) 
becomes 

g 

g 
g' 

g ' 

2 

C I ass ical Hard -S p h er e Scatter i ng P robabi I i ty 

The mean f r ee  path X(v) of an atom of mass ma and velocity v, in a Maxwellian 
gas of mass m temperature T constant density n and hard-sphere collision ra- 
dius d, may be calculated either from kinetic theory methods (ref. 6) o r  by using equa- 
tion (7) as 

6 
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where 

and 

y 2  
erf(y) = e-t dt 

4 7  

The probability that the atom of velocity v will travel a distance 1 through the gas 
without collision is 

By defining the reduced "velocity'? variable z as 

z =  v(@-J2 

where z is a parameter that compares the incoming velocity of the beam atom to  the 
peak velocity of the scattering-gas distribution, one may combine equations (8b), ( l l ) ,  
and (12) to yield a probability function P(z). The function P(z) is dependent only on the 

2 collision radius d, the density of scatterers,  and the function +(z)/z . The result is 
expressed by 
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- 1Gr d2ngb  ( z) /z "1 
P(z) = e 

Equation (13) may be put into a more compact form by letting 

If this definition of A is used, equation (13) takes the form of a generalized scattering 
probability function 

P(z) = e - W ( Z ) / d T Z 2  (15) 

The dimensionless quantity A is related to the classical mean free path obtained by 
considering the scattering gas as motionless. For a motionless scattering gas the mean 
f ree  path ho is independent of the velocity of the incoming particle and is given by 

1 xo = - 
2 rd n 

g 

The quantity A is the number of such classical mean free paths in the distance 1. The 
velocity dependence of the scattering gas and the velocity of the incoming particle are 
contained implicitly in the function Q(z): 

By using the appropriate expansions for  the erf(z), the following limits of P(z) are ob- 
tained: 

~ ( z )  -c o as exp (s) as z - 0 
f i Z  

P(z) - exp(-A) as z - 00 
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The result expressed by equation (18a) is physically interpretable as meaning simply 
that as the velocity of the incoming particle is reduced, the distance between collisions 
goes to zero, and hence, the mean f ree  path approaches zero. The result expressed by 
equation (18b) is consistent with the definition of the velocity independent mean f ree  path 

A qualitative examination of the functional dependence of P(z) on the incoming beam 
xO' 

velocity shows that the lower velocities will be scattered more strongly than the higher 
velocities. The function O(z) is expected to  show its most rapid change in the range 
O < z < l .  - -  

Generalized Velocity Distr ibution for Vacuum Maxwellian Beams 

The velocity distribution Io(v) present in a beam of atoms effusing from an isother- 
mal enclosure through a narrow slit into a vacuum and satisfying the mean f ree  path con- 
dition (ref. 7) is given by 

2 2  I (v) = 210 - v3 e-v /a 
4 0 

a! 

where 

a m 

The distribution has been normalized to the total intensity Io (in units of atoms/ 
(sec)(cm )). In equation (19) k is Boltzmann's constant, ma is the mass of the atom, 
and Ta is the temperature of the enclosure in O K .  

In beam experiments, the atomic or molecular beam is often velocity analyzed or 
selected by a velocity selector of either the helical-slit design of Miller and Kusch 
(ref. 1) or the slotted-disk design of Hostettler and Bernstein (ref. 2). The effect of the 
velocity selector is to modify the distribution Io(v) to the following equation: 

2 

Gv4 ,-v 2 2  /a 
I(v) = 210 - 

4 a 

The product Gv is the effective transmittance (refs. 1 and 2) of the selector, and G is 
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the geometrical transmissivity. 
It is well known that the form of the detected velocity-selected distribution is still 

further modified by the method of detecting the number of particles per second at the 
transmitted velocity. If a surface-ionization detector is employed, the distribution is 
unchanged from equation (20) except for some constant detection efficiency less  than one; 
however, if an electron-bombardment ionizer is used to  detect the incoming velacity- 
selected beam, the distribution given by equation (20) must be multiplied by a factor pro- 
portional to the inverse first power of v. The succeeding discussion presupposes that 
the beam is detected by a surface-ionization detector. The extension to the electron- 
bombardment ionizer detector with o r  without phase-sensitive detection is straightfor- 
ward. 

In order to make the results of the following discussion as generally applicable as 
possible, a distribution function In(v) is defined as 

2 2  Bvn e-v /a! In(v) = - 
4 

a! 

where 

B = 210 

B = 210G 

It is also convenient to define a reduced velocity x = v/vmn, where vmn is the peak 
velocity of the distribution In(v) and is given by 

( n  = 3; unselected beam) 

(n  = 4; selected beam) 

n 2  v i n  = o! 

A generalized velocity distribution 
or  a selected (n = 4) beam, may be 

Gn(x), corresponding to  either an unselected (n  = 3) 
obtained from equation (21) in te rms  of x: 

The distribution given by equation (23) has its maximum at x = 1 for n equal to 3 or  4. 
The distribution Gn(x) will be useful in calculating the shift in the peak of the velocity 
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distribution as the beam passes through a scattering gas and also will be useful in illus- 
trating the shape of the unselected or  selected vacuum-beam distribution. 

Distorted Velocity Distr ibution 

It is now possible to combine the results of the previous sections and obtain the dis- 
torted velocity distribution. The effect of the scattering gas in perturbing the vacuum 
distribution is taken as 

where the superscript prime is used to distinguish the distorted distribution. 
tion (24) follows from considering the incident velocity distribution as made up of non- 
interacting, monoenergetic beams of velocity v and linearily combining the effect of the 
scattering gas on each such beam of the incident distribution. When the reduced velocity 
x is introduced, a convenient form of the distorted distribution G:(x) is 

Equa- 

2 n-4 n 2 4T n\mgTa/ X Gh(x) = E(..r’2 Q! x e  

where 

and the relation between the reduced velocities x and z is 



Shi f t  of Peak Velocity of Vacuum Beam by Hard-Sphere Scattering 

The peak of the distorted velocity distribution (eq. (25)) is given by differentiating 
Gh(x) with respect to x and finding the value of x k n  that makes 

? 
The value of xmn is the solution to the following equation: 

'2 2A 
2 

1 - Xmn +- 
n '2 

= o  

An approximate solution to equation (28) is obtained by considering the t e rm involving 
the scattering as small compared to 1 and approximating the value of x k n  in this term 
by 1. Under this approximation, (x;,) to the first order is 

approx 

The effect of the scattering shifts the peak of the vacuum velocity distribution toward 
the higher velocities by an amount that is linearily dependent on the effective hard-sphere 
collision cross  section n-d . The amount of the shift G n ,  where ( x k n )  

is also linearily dependent on the density of scattering gas atoms present. 
A better approximate solution to equation (28) is obtained by replacing x k n  by 
TI 1 + G n ,  expanding the e r ro r  function about x k  = 1, and keeping only first-order terms 

in 6:. The result of this approximation scheme is 

I = 1 + G n ,  2 I 
approx 
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2 m T  
a g  I 

A comparison of approximations I and 11 is given in table I. 
a beam of cesium atoms at a source temperature of 450' K that has passed through var- 
ious scattering gases at a temperature of 300' K such that the vacuum peak velocity is 
attenuated by one-half. The shifts presented in table I a r e  calculated for n = 4 in order 

The calculated shifts are for 

TABLE I. - SHIFTS IN VACUUM PEAK VELOCITY 

OF CESIUM BEAM THAT HAS BEEN VELOCITY 

SELECTED AFTER PASSING THROUGH 

VARIOUS SCATTERING GASES 

[Beam temperature, 450' K; scattering-gas temper- 
ature, 300' K; attenuation of vacuum peak, 0. 5.1 

Scattering 

gas 

Hydrogen 
Helium 
Neon 
Nitrogen 
Argon 
Krypton 
Xenon 

First 
pproximation 
of amount of 
shift in peak 
velocity of 

vacuum 
iistribution, 

4 
(a) 

0.083 
.082 
.066 
.060 
.052 
.035 
.025 

aTheoretical. 

bobserved (ref. 8). 

Second 
tpproximation 
of amount of 
shift in peak 
velocity of 

vacuum 
distribution, 

6: 

(4 
0.077 
.075 
.061 
.055 
.048 
.033 
.024 

- 
Amount 
of shift 
in peak 

velocity 
,f vacuum 
istribution, 

64 

(b) 

to make the results directly applicable 
to velocity-selector data. 

A s  can be seen from either the in- 
spection of equation (30) or the values 
in table I, the calculated shift is well 
estimated by & for scattering gases 
comparable in mass with the incoming 
beam atom and for attenuations that 
are not too large. The former is due, 
in part, to the relative insensitiveness 
of the value of the erf(y) for small 
changes in the value of 

I 

for these cases; however, for large 
attenuations the approximation scheme 
used to solve equation (28) obviously 
does not hold. The shift is largest for 
the cases of the lighter mass scatter- 
ing atoms since the variation in the 
value of Pn(x) (eq. (26)) causes appre- 
ciable distortion in the vacuum velocity 
distribution over the entire velocity 
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Figure 1. - Observed velocity sh i f t  in peak velocity of cesium atomic beam as 
funct ion of relative he l i um scattering gas pressure. Data are f rom refer -  
ence 8 and correspond to cesium temperature of 450' K and h e l i u m  tem- 
perature of NOo K. 

range of the original distribution. 
In a recent cesium-beam experiment (ref. 8) performed with a high-resolution 

slotted-disk velocity selector and with nitrogen, argon, and helium as the scattering 
gases, observable shifts in the vacuum distribution were detected and measured. 
experimental conditions were similar to those specified by the conditions under which the 
values of the shift were computed in table I. The observed shifts a r e  within *lo percent 
of the calculated values. Figure 1 is a plot of the observed shifts in the peak velocity of 
the vacuum cesium beam for the case of scattering by helium (ref., 8). The abscissa in 
figure 1 is the relative helium pressure as indicated by an ion gage. The data confirm 
the linear relation between the shift in the peak velocity (eq. (29)) and the density of the 
helium atoms present. 
determining the peak velocity of the distribution. 

The 

The er ror  bars reflect the experimental difficulty involved in 

Computation of Distorted Velocity Distr ibution for Cesium Beam in Nitrogen 

The function O(z) defined in equation (17) has been evaluated over the range 
0 < z < 50. The choice of the range of z allows the distorted velocity distribution to be - -  
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TABLE II. - VALUES OF FUNCTION THAT TAKES PROPER ACCOUNT OF VELOCITY 

DISTRIBUTION PRESENT Ih' SCATTERING GAS FOR HARD-SPHERE COLLISIONS 

Function of 
reduced 
velocity, 

@(z) 
- 

112.8418 
56.42654 
37.62396 
28.22455 
22. 58641 
18.82890 
16.14604 
14.13483 
12. 57138 
11. 32138 
10. 29933 
9.448240 
8.728663 
8.112414 
7.578828 
7.112404 
6.701289 
6. 336264 
6.010051 
5.716828 
5.451880 
5.211352 
4.992056 
4.791339 
4.606970 
4.437062 
4.280008 
4.134429 
3.999137 
3.873103 
3.755430 
3.645334 
3.542125 
3.445194 
3.354003 
3.268072 
3.186975 
3.110328 

Reduced 
velocity, 

z 

0.01 
.02 
.03 
.04 
.05 
.06 
.07 
.08 
.09 
.10 
.ll 
.12 
.13 
. 14 
.15 
. 16 
. 17 
. 18 
.19 
.20 
.21 
.22 
.23 
.24 
.25 
.26 
.27 
.28 
.29 
.30 
.31 
.32 
.33 
.34 
.35 
.36 
.37 
.38 

Reduced 
velocity, 

z 

0. 39 
.40 
.41 
.42 
.43 
.44 
.45 
.46 
.47 
.48 
.49 
.50 
.51 
.52 
.53 
.54 
.55 
. 56 
. 57 
. 58 
. 59 
.60 
.61 
.62 
.63 
.64 
.65 
.66 
.67 
.68 
.69 
.70 
.71 
.72 
.73 
.74 
.75 
.76 

Function of 
reduced 
velocity, 

e (2) 

3.037788 
2.969048 
2.903827 
2.841875 
2.782961 
2.726878 
2.673438 
2.622465 
2. 573803 
2.527306 
2.482840 
2.440284 
2.399524 
2.360456 
2.322983 
2.287016 
2.252472 
2.219273 
2.187350 
2.156634 
2.127065 
2.098583 
2.071135 
2.044669 
2.019139 
1.994501 
1.970711 
1.947731 
1.925524 
1.904056 
1.883293 
1.863204 
1.843761 
1.824936 
1.806703 
1.789037 
1.771916 
1.755316 

Reduced 
velocity, 

z 

0.77 
.78 
.79 
.80 
.81 
.82 
.83 
. 84 
.85 
.86 
.87 
.88 
.89 
.90 
.91 
.92 
.93 
.94 
.95 
.96 
.97 
.98 
.99 
1. 00 
1. 05 
1. 10 
1. 15 
1.20 
1. 25 
1. 30 
1. 35 
1.40 
1.45 
1. 50 
1. 55 
1. 60 
1. 65 
1. 70 

Function of 
reduced 
velocity, 

a4 

1.739217 
1.723600 
1.708445 
1.693734 
1.679451 
1.665579 
1.652103 
1.639008 
1.626279 
1.613905 
1.601872 
1.590167 
1. 578780 
1.567699 
1.556913 
1.546413 
1. 536189 
1.526231 
1. 516531 
1. 507079 
1.497869 
1.488891 
1.480139 
1.471605 
1.431977 
1.396872 
1.365652 
1.337789 
1.312837 
1.290422 
1.270226 
1.251980 
1.235451 
1.220439 
1.206772 
1.194300 
1.182895 
1.172441 

ieduced 
velocity, 

z 

1. 75 
1. 80 
1. 85 
1. 90 
1.95 
2. 00 
2.20 
2. 40 
2. 60 
2. 80 
3. 00 
3. 20 
3. 40 
3. 60 
3. 80 
4.00 
4. 50 
5. 00 
5. 50 
6. 00 
6. 50 
7.00 
7. 50 
8. 00 
8. 50 
9.00 
9. 50 
10.00 
15.00 
20.00 
25.00 
30.00 
35.00 
40.00 
45.00 
50.00 

- 
Function of 

reduced 
velocity, 

e(z) 
~~ 

1.162839 
1.154003 
1.145856 
1.138329 
1.131363 
1.124904 
1.103278 
1.086798 
1.073963 
1.063775 
1.055555 
1.048828 
1.043253 
1.038580 
1.034626 
1.031250 
1.024691 
1.020000 
1.016529 
1.013889 
1.011834 
1.010204 
1.008889 
1.007813 
1.006920 
1.006173 
1.005540 
1.005000 
1.002222 
1.001250 
1.000800 
1.000556 
1.000408 
1.000312 
1.000247 
1.000200 
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Figure 2. - Calculated velocity-selected scattering probability funct ion as func t ion  of reduced velocity. Funct ion P4(x) calculated for cesium 
beam at cesium temperature of 450' K and ni t rogen scattering gas at n i t rogen temperature of 300' K. Value of A chosen to make 
P4( l )  = 0.5. 

calculated for  a wide variation of beam atoms and scattering gas atoms in the mass range 
of hydrogen to  mercury. The evaluation of 0(z) was performed on an IBM 7090 digital 
computer. Since the strongest variation in 0(z) is over the range 0 < z < 1, the values 
of 0(z) were computed in 0.01 steps. The choice of the steps in z for z > 1 were 
dictated mainly by the change in 0(z) for the value of the argument. Table 11 presents 
the results of the evaluation of 0(z). 

The distorted velocity distribution is calculated from the values of O(Z) by the fol- 
lowing method. The numerical factor that relates the value of x and z is computed 
from equation (27) for the specific case under consideration along with the value of the 
constant A. The probability Pn(x) that a particular value of x will pass unscattered 
through the scattering gas is given by evaluating equation (26) for  that value of z corre- 
sponding to the value of x. The values of 0(z) for  z values not tabulated may be ob- 
tained by interpolation of the values given in table 11, or  else the procedure may be re- 
versed to that of calculating the value of x corresponding to the value of z listed in the 
table. The distorted distribution is then simply obtained by multiplying the value of 
Gn(x) by the value of the determined P,(x). 

A calculation of the distortion expected in a velocity-selected cesium beam that is 
attenuated to one-half of its value at the vacuum peak velocity by nitrogen-gas scattering 
is used to illustrate the method. A beam temperature of 450' K and a scattering gas 
temperature of 300' K a r e  chosen. The numerical factor that relates x and z for this 
case is x = 1. 2582. The quantity A has the value 0.407. Figure 2 is a plot of the cal- 

- -  
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Figure 3. - Observed normalized velocity-selected distribution function present in cesium beam after passing through scattering gas of 
nitrogen as function of reduced velocity. Data are from reference 8 and correspond t o  cesium temperature of 4500 K and nitrogen 
temperature of M O O  K. Velocity at peak (x, = 1) attenuated by 0.5 from that of vacuum condition. 

culated P4(x) against the reduced velocity x. As expected, the slower moving atoms in 
the beam (x < 1) are the Ones most strongly attenuated or scattered out of the original 
vacuum distribution. 

cesium-beam experiment (ref. 8) that involved nitrogen-gas scattering, the theoretical 
distribution Gn(x) (eq. (23)) was normalized to 1 at x = 1. The results are shown in 
figure 3. The solid curve is the theoretical velocity-selected vacuum distribution G4(x). 
The dashed curve is the calculated distorted velocity-selected distribution Gi(x) normal- 
ized to 1 at x = 1, and the points shown are the data obtained in the cesium-nitrogen 
experiments of Manista and Sheldon (ref. 8). The agreement between the observed dis- 

In order to compare the calculated distorted distribution with the results of a recent 
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tribution and the calculated one is excellent for this case. 
Notice that the entire distribution Gq(x) is shifted toward higher absolute velocities 

after passing through the scattering gas. On the surface it appears that the scattering 
process has violated the law of energy conservation in so  far as the velocity distribution 
in the beam after scattering now corresponds to a higher mean energy. The problem 
resolves itself when one realizes that the particles under observation, Gi(x), a r e  those 
from the original distribution that have not been scattered out of the beam; if one were 
able to observe the particles that have been scattered out of the beam, one would find 
this scattered distribution composed of particles that are shifted toward lower absolute 
velocities and, hence, to a lower mean energy. 

A final word in regard to  the interpretation of velocity-distribution experiments is 
appropriate. If the observed peak velocity corresponding to a maximum signal to the 
detector is chosen as the normalizing point in order to compare the experimental distri- 
bution with that of the Maxwellian distribution, one may inadvertently, under conditions 
of appreciable cloud scattering at the beam-source slit, distort the experimental distri- 
bution from the t rue distribution. 
cases  has the effect of introducing apparent deficiencies in the number of higher velocity 
particles in the distribution and, also, an underestimation of the deficiencies in the num- 
ber of lower velocity particles. 

Normalizing to  the observed peak velocity in these 

CONCLUDING REMARKS 

A generalized formulation of the effective scattering c ros s  section for particles 
whose velocities a r e  comparable was presented. The formulation was shown to reduce 
to that of the classical kinetic-theory velocity-dependent mean f ree  path in the hard- 
sphere approximation. 

The scattering probability P(v) for a beam atom of velocity v in a Maxwellian 
scattering gas was investigated. The scattering probability was written in te rms  of 
a universal function 0(z ) ,  where z was a parameter that took into account the relative 
motion of the beam atom and the scattering gas atoms. A table of the computed values 
of O(z) was given for  the range 0 < z < 50. 

A method of computing the distortion of a Maxwellian velocity distribution of an 
atomic beam due to its passage through a scattering gas was outlined. The calculation 
was applied to the case of cesium-beam scattering by nitrogen, and the results were 
shown to be in excellent agreement with experiment. 

the distribution passed through a classical hard-sphere gas was made. An approximate 
expression for  the shift in the peak velocity of the distribution was derived. The results 

- -  

An analytical study of the shift in the peak velocity of a Maxwellian distribution as 
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o f  the calculation showed that the velocity shift was always toward the higher velocities 
in the distribution and was strongly dependent on the amount of attenuation o r  scattering 
that had occurred. The calculated shifts for the specific case of cesium-beam scattering 
by nitrogen, argon, and helium were shown to be in good agreement with the recent ex- 
periments of Manista and Sheldon (ref. 8). 

The hard-sphere approximation of classical kinetic theory is expected to  be a valid 
approach to  the method of calculating the distortion of the beam distribution for the cases  
in which the mean velocity of the scattering-gas distribution is large compared to the 
mean beam velocity. This implies that in equation (6) the actual relative velocity varia- 
tion of the total c ross  section is over a limited range (a(vr) vr -2/5 due to the pres-  
ence of a van der Waal type inverse sixth-power attraction between the neutral atoms 
(ref.  9)) and that the cross  section may be replaced by an effective hard-sphere value 
without too much influence on the resiilting integrations over vr and v g' 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 13, 1964. 

REFERENCES 

1. Miller, R. C. , and Kusch, R. : Velocity Distributions in Potassium and Thallium 
Atomic Beams. Phys. Rev., vol. 99, no. 4, Aug. 15, 1955, pp. 1314-1321. 

2. Hostettler, Hans U., and Bernstein, Richard B. : Improved Slotted Disk Type Selector 
for Molecular Beams. Rev. Sci. Instr., vol. 31, no. 8, Aug. 1960, pp. 872-877. 

3. Estermann, I., Simpson, O.C., and Stern, 0. : The F ree  Fall of Atoms and the 
Measurement of the Velocity Distribution in a Molecular Beam of Cesium Atoms. 
Phys. Rev., vol. 71, no. 4, Feb. 15, 1947, pp. 238-249. 

4. Rosin, Seymour, and Rabi, I. I. : Effective Collision Cross  Sections of the Alkali 
Atoms invar ious  Gases. Phys. Rev., vol. 48, Aug. 15, 1935, pp. 373-379. 

5. Morse, Fred A., and Bernstein, Richard B. : Velocity Dependence of the Differential 
Jour. Chem. Cross Sections for the Scattering of Atomic Beams of K and Cs  by Hg. 

Phys., vol. 37, no. 9, Nov. 1, 1962, pp. 2019-2027. 

6. Jeans, J. H. : The Dynamical Theory of Gases. Fourth ed., Dover Pub., 1954. 

7. Ramsey, Norman Foster: Molecular Beams. Clarendon P r e s s  (Oxford), 1956. 

19 



8. Manista, E. J.,  and Sheldon, J. W. : Preliminary Experiments with a Velocity- 
Selected Atomic-Beam Apparatus. NASA TN D-2557, 1964. 

9. Massey, H. S. W., and Mohr, C. B. 0. : Free Paths and Transport Phenomena in 
Gases and the Quantum Theory of Collisions. II. - The Determination of the Laws 
of Force Between Atoms and Molecules. Proc. Roy. Soc. (London), ser. A, 
vol. 144, no. 851, Mar. 1, 1934, pp. 188-204. 

20 NASA-Langley, 1965 E-2599 



T h e  aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of him“ knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS Informarion derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts, Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. PO546 


